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ABSTRACT: Relationships are derived for the first critical heat flux 
in the boiling of a liquid on cylindrical and planar heaters in a weak 
gravitational field and on a cylindrical heater under terrestrial condi- 
tions. 

1. Borishanskii and Fokin [1] have determined the lower limit to 
the first critical heat flux in boiling of a liquid on a planar heater 
under terrestrial conditions. The corresponding result for a cylindrical 
heater is of interest in relation to boiling on thin wires. 

Consider an infinitely long horizontal cylinder of radius R with 
the liquid L~itially at rest and the initial temperature equal to the 
boiling point. At t > 0 the heater receives a heat flux q of constant 
density. Free convection occurs under normal conditions, so the crit- 
ical q calculated without convection will be less than the true first 
critical flux q, ,  and the result can be considered as a lower limit to 

the latter. 
If convection is neglected, the problem is as follows: 

__=OV ~. 0 (r OTh T It=0 = 0, ~ OT - - q ,  (1.1) 
cp Ot r Or \ -~-r ] ' ~ r=R--  

in which c is specific heat, p is the density of the liquid, k is the 
thermal conductivity, t is time, and T is the difference between the 
temperature of the liquid and the boiling point. 

The time taken for the crisis to arise is t ~ J. see for some liquids 
of practical importance (crvogeuic liquids, ethyl ether, water, etc), 
so the Fourier number at /R  >> 1 (it is m the range t0 -10 7, and so 
T(R, t) (difference between the heater temperature and the boiling 
point 7 [2] can be written as 

T (R, t) = qR In 4 a t  (C = 1.78t), (1.2) 
2~ C R 'z 

in which a is the thermal diffusivity of the liquid. 
From [3] we have the radius R1 of a bubble as a function of time as 

dB1 __ tO ~T (R, t) 
dt ~ ,  R t  lt=~ = 0. (1.3) 

Substitution of (1.27 into (L37 and integration gives 

= [tOqR t 4at \ 'h  [e = 2.7t828~ (1.47 
/h \%-~- In--c-N~) tO = t38t ] '  

in which L is latent heat of evaporation and p" is the density of the 

vapor. 
From (1.4) we can find the time tl for the bubble to break away by 

putting Rt(h) = PC, in which Ro is the radius at the instant of break- 

away; then 

r In 7; = ~.o ..~ ~ 4ah 0.4Lp"Ro ~ - - ,  : n o = -  (1.5) 
q CRZe ' CR~e 

To find R0 we use [4] 

B0 : 0.02080 ( ( p ~ ) V ' .  (1.67 

Here 0 is the angle of contact, o is the surface tension at the liquid- 
vapor interface, and g* is the acceleration due to gravity. 

As c~0/q >> 1 (around 10s), we can use an asymptotic formuia [5] for 
the roots of (1.5): 

a0 (1.77 
x --  q (In cr - -  In q)" 

Consider the formula for the lower limit to %. if we assume that 
all the heat released per m 2 in time t~ goes to produce vapor, the 

lower limit is 

q _  4 ~RoSnLp" 
-- 3 T '  (1.87 

in which n is the number of interacting bubbles per m 2. We may as- 
sume that the bubbles fuse to give a bubble of ellipsoidal form; then 
n ~. i /S ,  in which S is the surface area of the ellipsoid. We replace 
the latter by the equivalent sphere to get 

n ~. t / 4zR02 �9 (1.9) 

Substitution of (1.7) and (1.9) into (1.8) gives 

q = ao e-3"asaR/R'" (1.107 

2. Consider the lower limit to q,  for a planar heater in a weak 
gravitational field. Let AT0 be the superheating of the liquid, and t o 
the time needed to produce this, the latter being given [2] by 

tO - -  ~'~ ( A T 0 )  ~ __ P t  
4q~a ~-~ , 

~- 2q (~)%, (4 f  )" (2.17 T (0, t) = (p l - -  ~ oP~ 

A bubble arises on the heater at t - to and starts to grow; (1.3) and 
(2.1) give us for the radius that 

dR1_ 20q ] / '~-  (2.2) 

et Lp"V-~a,  " 

We integrate (2.2) with Rl(t0) = 0 to get 

B1 = 80%--~-- qV'a'l" (t '/' - -  to %) 'h. (2.3) 
~ ' / .  l i t  3Lp" 

We deduce tt from P,4(tD = Ro to get 

( ~ _ +  ~',,, _ 3 r  R 0 = R ~ , .  (2.47 
~- to%/ pz 80 n %'; ti 

Here Pc is defined as in [6], with Pen calcuIated from (1.6); n = 
= g/g*, g~ = 9.81 m/see  2 is the acceleration due to gravity at the 
earth's surface, and g is the actual gravitational acceleration. 

The argument of section s gives the lower limit for q ,  as 

~RoLp" . (2.5) 
q ~ 3tl 

We substitute for tl from (2.4) to get 

This equation can be solved graphically. 
3. Consider the lower limit to q ,  for a horizontal infinitely long 

cylindrical heater (radius R7 in a weak gravitational field. We find t0 
from (1.2): 

to = G4--Ra ~ exp [2~,A7'o~ (3.i) 

iqR 1" 

We solve (1.3) with Ill(t0) = 0 to get 

R Ft0qR ( t"  4at �9 1~ 4ato'~]'l~ 
' = LTjv' m ~ . . . .  ~ ~x) ]  �9 ( a . 2 >  

We deduce tl from Rl(tl) = R0 via the method of [5]: 
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t .0  
0.5 
0.3 
0 . i  
0.04 
0.01 
0.005 

Table 

Calculated 

~10-'  q, 

6.6 t .0  
2.6 0.40 
2.5 0.38 
2.2 0.33 
2.15 0.33 
2.0 0.30 
1.7 0.26 

Experimental 

q,iO-* q, 
W/m2 q,n 

15.6 1.0 
t3.1 0.84 
t l . 6  0.74 
8.6 0.56 
7.0 0.45 
4.9 0.3! 
4.1 0.27 

ao -I- ~-q (r  = 4atl  

~o - -  0"4Lp"R~ [51 = 4ato 4ato (3.3) 
C R " ~  ' ~ In C--B~' 

We substitute (3.1) and (3.3) into (1.8) to get 

~2 -=.  ~o + (exp (Co/q)--t) (Co - -  q) 
In [~o / q + (exp (Co/q)--t) (co / q - -  t)l ' 

2~,ATo ~2 = 4Lp"aRo ~o ~- ao . (3.4) co = - - - g - ,  a - g ~  ' 

This equation can be solved graphically. 
For weak fields, Ra is deduced from (2.4). The table gives results 

for q ,  from theory and experiment for liquid oxygen with AT0 ~ 10 ~ 
The calculation for g~ was performed via (1.10) and for g via (3.4). 

If we replace (2.4) for weak fields by a published relation: 

R o = ]~onrl -a/~ for n > 0 . t  

and 

Ro=Ron n -'I~ for n < 0 . 1 , -  

the results for q ,  in the table remain unchanged. 
These experimental  results were obtained at the Institute of Low- 

Temperature Physics Technology, Academy of Sciences of the Ukrai- 

nian SSI~ with simulation of low-gravity conditions for liquid oxygen 
in a magnet ic  fietd [8]. We used a plat inum wire 0.05 m m  in diam- 
eter. The results for q .  with 0.01 < n - I are closely described by 
the Kutateladze-Borishanskii-Zubra formula. This formula also agrees 
satisfactorily with experiments on water and liquid nitrogen [6, 9]. 

Table 1 shows that the calculated q ,  are of the correct order and 
represent the lower l imit to the first critical flux. The calculated and 
experimental  q , / q*n  are vixtually the same for small  a (around 10-z). 
The results are applicable for 10 "~ < n "< 1. 
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