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ABSTRACT:: Relationships are derived for the first critical heat flux
in the boiling of a liquid on cylindrical and planar heaters in a weak
gravitational field and on a cylindrical heater under terrestrial condi-
tions.

1. Borishanskii and Fokin [1] have determined the lower limit to
the first critical heat flux in boiling of a liquid on a planar heater
under terrestrial conditions. The corresponding result for a cylindrical
heater is of interest in relation to boiling on thin wires.

Consider an infinitely long horizontal cylinder of radius R with
the liquid initially at rest and the initial temperature equal to the
boiling point. Att > 0 the heater receives a heat flux q of constant
density. Free convection occurs under normal conditions, so the crit-
ical q calculated without convection will be less than the true first
critical flux q o and the result can be considered as a lower limit to
the latter.

If convection is neglected, the problem is as follows:
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in which c is specific heat, p is the density of the liquid, A is the
thermal conductivity, tis time, and T is the difference between the
temperature of the liquid and the boiling point.

The time taken for the crisis to arise is t = 1 sec for some liquids
of practical importance (cryogenic liquids, ethyl ether water etc),
so the Fourier number at/R? >> 1 (it is in the range 10 .10 ), and so
T(R, t) (difference between the heater temperature and the boiling
point) [2] can be written as
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in which @ is the thermal diffusivity of the liquid.
From [3] we have the radius Ry of a bubble as a function of time as
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Substitution of (1.2) into (1.3) and integration gives
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in which L is latent heat of evaporation and p* is the density of the
vapor.

From (1.4) we can find the time t; for the bubble to break away by
putting Ry(ts) = Rg, in which Ry is the radius at the instant of break-
away; theu
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To find Ry we use [4]
Ro = 0.02089 ( ; )’ . (1.6)
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Here © is the angle of contact, o is the surface tension at the liquid-
vapor interface, and g is the acceleration due to gravity.

As op/q > 1 (around 106), we can use an asymptotic formula [5] for
the roots of (1.5):

_ oy (1.7)
g (Inoy—1Ing)”

Consider the formula for the lower limit to q,. If we assume that
all the heat released per m? in time goes to produce vapor, the
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lower 1limit is

(1.8)
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in which n is the number of interacting bubbles per m%. We may as-
sume that the bubbles fuse to give a bubble of ellipsoidal form; then
n~1/s, in which § is the surface area of the ellipsoid. We replace
the latter by the equivalent sphere to get

rn=1/4nR3. (1.9)

Substitution of (1.7) and (1.9) into (1.8) gives
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2. Consider the lower limit to q, for a planar heater in a weak
gravitational field. Let ATy be the superheating of the liquid, and t,
the time needed to produce this, the latter being given [2] by
fo = MATn __ p
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A bubble arises on the heater at t = ty and starts to grow; (1.3) and
(2.1) give us for the radius that
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We integrate (2.2) with Ry(t) = 0 to get
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We deduce t; from Ri(t1) = Ry to get
Ry, (2.4)
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Here Ry is defined as in {61, with Rgp calculated from (1.6); n=
= g/g°, g° =9.81 m/sec2 is the acceleraticn due to gravity at the
earth’s surface, and g is the actual gravitational acceleration.
The argument of section 1 gives the lower 1imit for q, as
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We substitute for fy from (2.4) to get
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This equation can be solved graphically.
3. Counsider the lower limit to q . for a horizontal infinitely long

cylindrical heater (radius R) in a weak gravitational field. We find t,
from (1.2):
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We solve (1.3) with Ry(tg) = 0 to get
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We deduce t1 from Ry(t1) = Ry via the method of [5]:



Table 1

Calculated Experimental
n
g 10=¢ 9, q,40-4 A
W/m? 9, W/m? 9.0
1.0 6.6 1.0 15.6 1.0
0.5 2.8 0.40 13.1 0.8
0.3 2.5 0.38 11.6 0.74
0.1 2.2 0.33 8.6 0.56
0.04 2.15 0.33 7.0 0.45
0.01 2.0 0.30 4.9 0.31
0.005 1.7 0.26 4.1 0.27
= dg -+ Big (T: 4a,t1)
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We substitute (3.1) and (3.3) into (1.8) to get
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This equation can be solved graphically.

For weak fields, Ry is deduced from (2.4). The table gives results
for q,, from theory and experiment for liquid oxygen with ATy = 10°.
The calculation for g° was performed via (1.10) and for g via (3.4).

If we replace (2.4) for weak fields by a published relation:

Ry= Ropn™* for n>0.4
and

Ro=~Rop ™t for n< 04,

the results for q,, in the table remain unchanged.
These experimental results were obtained at the Institute of Low-
Temperature Physics Technology, Academy of Sciences of the Ukrai-

nian 8SR, with simulation of low-gravity conditions for liquid oxygen
in a magnetic field [8]. We used a platinum wire 0.05 mm in diam-
eter. The results for ¢, with 0.01 < n = 1 are closely described by
the Kutateladze-Borishanskii-Zubra formula. This formula also agrees
satisfactorily with experiments on water and liquid niwogen {6, 9]
Table 1 shows that the calculated g are of the correct order and
represent the lower limit to the first critical flux. The calculated and
experimental q_/q,, are virtually the same for small a (around 107%).
The results are applicable for 10%<n=1.

REFERENCES

1. V. M. Borishanskii and B. A. Fokin, "Deterioration of the
temperature distribution upon a sudden increase in the thermal loading
of a hot surface in a large volume of liquid,” Trudy Tsentr. nauch.-
issied. i. proekt.-konstrukt. inst., Leningrad, 58, 1966.

2. H. Carslaw and G. Jaeger, Conduction of Heat in Solids [Rus-~
sian translation], lzd-vo Nauka, Moscow, 1964.

3. D. A. Labuntsov, "Mode of growth of vapor bubbles at a heated
surface," Inzh, -fiz. zh,, 6, no. 4, 1963.

4. S. S. Kutateladze, Principles of the Theory of Heat Transfer
[in Russian}, 2nd edition, Mashgiz, Moscow-Leningrad, 1962.

5. M. A. Efgrafov, Asymptotic Estimates and Integral Functions
[in Russian], 2nd edition, Fizmatgiz, Moscow, 1962.

6. S. Usykin and R. Siegel, "An experimental study of boiling
under conditions of reduced and zero gravity," in: Weightlessness [Rus-
sian translation], Izd-vo Mir, Moscow, 1964.

7. R. Siegel and E. G. Keshock, "Effecis of reduced gravity on
nucleate boiling bubble dynamics in saturated water,” AIChE J.,
vol. 10, no. 4, 1964

8. B. I Verkin, Yu. A. Kirichenko, M. L. Dolgoi, I. V, Lipa-
tova, and A, L Charkin, "Simulation of weak gravitational fields
for research on heat transfer by boiling," Abstracts of Reports to the
Third Ali-Union Conference on Heat Transfer and Hydraulic Resis-
tance [in Russian], Leningrad, 19617.

9. H. Merth and G, A, Clark, "Heat transfer in boiling of cry-
ogenic liquids under conditions of normal, reduced, and nearly zero
gravitation,” Trans. ASME, series C, J. Heat Transfer, 86, no. 3,
1964.

12 January 1968 Khar 'kov

317



